3.1.89 \(\int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^4(c+d x) \, dx\) [89]

3.1.89.1 Optimal result
3.1.89.2 Mathematica [A] (verified)
3.1.89.3 Rubi [A] (verified)
3.1.89.4 Maple [B] (verified)
3.1.89.5 Fricas [A] (verification not implemented)
3.1.89.6 Sympy [F(-1)]
3.1.89.7 Maxima [B] (verification not implemented)
3.1.89.8 Giac [A] (verification not implemented)
3.1.89.9 Mupad [F(-1)]

3.1.89.1 Optimal result

Integrand size = 33, antiderivative size = 164 \[ \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^4(c+d x) \, dx=\frac {a^{3/2} (11 A+14 B) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{8 d}+\frac {a^2 (11 A+14 B) \tan (c+d x)}{8 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 (7 A+6 B) \sec (c+d x) \tan (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}+\frac {a A \sqrt {a+a \cos (c+d x)} \sec ^2(c+d x) \tan (c+d x)}{3 d} \]

output
1/8*a^(3/2)*(11*A+14*B)*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2)) 
/d+1/8*a^2*(11*A+14*B)*tan(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+1/12*a^2*(7*A+6 
*B)*sec(d*x+c)*tan(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+1/3*a*A*sec(d*x+c)^2*(a 
+a*cos(d*x+c))^(1/2)*tan(d*x+c)/d
 
3.1.89.2 Mathematica [A] (verified)

Time = 0.63 (sec) , antiderivative size = 132, normalized size of antiderivative = 0.80 \[ \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^4(c+d x) \, dx=\frac {a \sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \sec ^3(c+d x) \left (3 \sqrt {2} (11 A+14 B) \text {arctanh}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^3(c+d x)+(7 (7 A+6 B)+4 (11 A+6 B) \cos (c+d x)+(33 A+42 B) \cos (2 (c+d x))) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{48 d} \]

input
Integrate[(a + a*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x])*Sec[c + d*x]^4,x 
]
 
output
(a*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sec[c + d*x]^3*(3*Sqrt[2]*( 
11*A + 14*B)*ArcTanh[Sqrt[2]*Sin[(c + d*x)/2]]*Cos[c + d*x]^3 + (7*(7*A + 
6*B) + 4*(11*A + 6*B)*Cos[c + d*x] + (33*A + 42*B)*Cos[2*(c + d*x)])*Sin[( 
c + d*x)/2]))/(48*d)
 
3.1.89.3 Rubi [A] (verified)

Time = 0.88 (sec) , antiderivative size = 160, normalized size of antiderivative = 0.98, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.303, Rules used = {3042, 3454, 27, 3042, 3459, 3042, 3251, 3042, 3252, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^4(c+d x) (a \cos (c+d x)+a)^{3/2} (A+B \cos (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^4}dx\)

\(\Big \downarrow \) 3454

\(\displaystyle \frac {1}{3} \int \frac {1}{2} \sqrt {\cos (c+d x) a+a} (a (7 A+6 B)+3 a (A+2 B) \cos (c+d x)) \sec ^3(c+d x)dx+\frac {a A \tan (c+d x) \sec ^2(c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{6} \int \sqrt {\cos (c+d x) a+a} (a (7 A+6 B)+3 a (A+2 B) \cos (c+d x)) \sec ^3(c+d x)dx+\frac {a A \tan (c+d x) \sec ^2(c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{6} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a (7 A+6 B)+3 a (A+2 B) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^3}dx+\frac {a A \tan (c+d x) \sec ^2(c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 3459

\(\displaystyle \frac {1}{6} \left (\frac {3}{4} a (11 A+14 B) \int \sqrt {\cos (c+d x) a+a} \sec ^2(c+d x)dx+\frac {a^2 (7 A+6 B) \tan (c+d x) \sec (c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a A \tan (c+d x) \sec ^2(c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{6} \left (\frac {3}{4} a (11 A+14 B) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )^2}dx+\frac {a^2 (7 A+6 B) \tan (c+d x) \sec (c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a A \tan (c+d x) \sec ^2(c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 3251

\(\displaystyle \frac {1}{6} \left (\frac {3}{4} a (11 A+14 B) \left (\frac {1}{2} \int \sqrt {\cos (c+d x) a+a} \sec (c+d x)dx+\frac {a \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^2 (7 A+6 B) \tan (c+d x) \sec (c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a A \tan (c+d x) \sec ^2(c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{6} \left (\frac {3}{4} a (11 A+14 B) \left (\frac {1}{2} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {a \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^2 (7 A+6 B) \tan (c+d x) \sec (c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a A \tan (c+d x) \sec ^2(c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 3252

\(\displaystyle \frac {1}{6} \left (\frac {3}{4} a (11 A+14 B) \left (\frac {a \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {a \int \frac {1}{a-\frac {a^2 \sin ^2(c+d x)}{\cos (c+d x) a+a}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}\right )+\frac {a^2 (7 A+6 B) \tan (c+d x) \sec (c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a A \tan (c+d x) \sec ^2(c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{6} \left (\frac {a^2 (7 A+6 B) \tan (c+d x) \sec (c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}+\frac {3}{4} a (11 A+14 B) \left (\frac {\sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {a \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )\right )+\frac {a A \tan (c+d x) \sec ^2(c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\)

input
Int[(a + a*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x])*Sec[c + d*x]^4,x]
 
output
(a*A*Sqrt[a + a*Cos[c + d*x]]*Sec[c + d*x]^2*Tan[c + d*x])/(3*d) + ((a^2*( 
7*A + 6*B)*Sec[c + d*x]*Tan[c + d*x])/(2*d*Sqrt[a + a*Cos[c + d*x]]) + (3* 
a*(11*A + 14*B)*((Sqrt[a]*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c 
+ d*x]]])/d + (a*Tan[c + d*x])/(d*Sqrt[a + a*Cos[c + d*x]])))/4)/6
 

3.1.89.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3251
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)*Cos[e + f*x]*((c + d*Sin[e 
+ f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x] + Sim 
p[(2*n + 3)*((b*c - a*d)/(2*b*(n + 1)*(c^2 - d^2)))   Int[Sqrt[a + b*Sin[e 
+ f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]
 

rule 3252
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)]), x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b*c + a*d - d*x^2), 
x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3454
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[ 
e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Simp[b/(d*(n + 1)*(b*c + 
 a*d))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp 
[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n + 1) - B 
*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
&& GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0 
])
 

rule 3459
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1) 
*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b* 
c - 2*a*d*(n + 1)))/(2*d*(n + 1)*(b*c + a*d))   Int[Sqrt[a + b*Sin[e + f*x] 
]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1]
 
3.1.89.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1282\) vs. \(2(144)=288\).

Time = 5.88 (sec) , antiderivative size = 1283, normalized size of antiderivative = 7.82

method result size
parts \(\text {Expression too large to display}\) \(1283\)
default \(\text {Expression too large to display}\) \(1326\)

input
int((a+cos(d*x+c)*a)^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^4,x,method=_RETURNV 
ERBOSE)
 
output
1/6*A*a^(1/2)*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-264*a*(l 
n(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*( 
a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))+ln(-4/(2*cos(1/2*d*x+1/2*c)-2^ 
(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2 
)*a^(1/2)-2*a)))*sin(1/2*d*x+1/2*c)^6+132*(2*2^(1/2)*(a*sin(1/2*d*x+1/2*c) 
^2)^(1/2)*a^(1/2)+3*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2 
*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*a+3*ln(-4 
/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*s 
in(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a)*sin(1/2*d*x+1/2*c)^4-22*(16*2^ 
(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+9*ln(4/(2*cos(1/2*d*x+1/2*c)+ 
2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1 
/2)*a^(1/2)+2*a))*a+9*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos( 
1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a)*sin 
(1/2*d*x+1/2*c)^2+33*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/ 
2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*a+33*ln( 
-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a 
*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a+126*2^(1/2)*(a*sin(1/2*d*x+1/ 
2*c)^2)^(1/2)*a^(1/2))/(2*cos(1/2*d*x+1/2*c)+2^(1/2))^3/(2*cos(1/2*d*x+1/2 
*c)-2^(1/2))^3/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d+1/4*B*a 
^(1/2)*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(28*2^(1/2)*a*...
 
3.1.89.5 Fricas [A] (verification not implemented)

Time = 0.34 (sec) , antiderivative size = 202, normalized size of antiderivative = 1.23 \[ \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^4(c+d x) \, dx=\frac {3 \, {\left ({\left (11 \, A + 14 \, B\right )} a \cos \left (d x + c\right )^{4} + {\left (11 \, A + 14 \, B\right )} a \cos \left (d x + c\right )^{3}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, {\left (3 \, {\left (11 \, A + 14 \, B\right )} a \cos \left (d x + c\right )^{2} + 2 \, {\left (11 \, A + 6 \, B\right )} a \cos \left (d x + c\right ) + 8 \, A a\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{96 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}} \]

input
integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^4,x, algorith 
m="fricas")
 
output
1/96*(3*((11*A + 14*B)*a*cos(d*x + c)^4 + (11*A + 14*B)*a*cos(d*x + c)^3)* 
sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*sqrt(a*cos(d*x + c) 
 + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos 
(d*x + c)^2)) + 4*(3*(11*A + 14*B)*a*cos(d*x + c)^2 + 2*(11*A + 6*B)*a*cos 
(d*x + c) + 8*A*a)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c))/(d*cos(d*x + c)^ 
4 + d*cos(d*x + c)^3)
 
3.1.89.6 Sympy [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^4(c+d x) \, dx=\text {Timed out} \]

input
integrate((a+a*cos(d*x+c))**(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)**4,x)
 
output
Timed out
 
3.1.89.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 7567 vs. \(2 (144) = 288\).

Time = 154.99 (sec) , antiderivative size = 7567, normalized size of antiderivative = 46.14 \[ \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^4(c+d x) \, dx=\text {Too large to display} \]

input
integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^4,x, algorith 
m="maxima")
 
output
-1/96*((774*sqrt(2)*a*cos(7/2*d*x + 7/2*c)*sin(2*d*x + 2*c) + 162*sqrt(2)* 
a*cos(5/2*d*x + 5/2*c)*sin(2*d*x + 2*c) + (14*sqrt(2)*a*sin(3/2*d*x + 3/2* 
c) + 90*sqrt(2)*a*sin(1/2*d*x + 1/2*c) - 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 
 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*s 
in(1/2*d*x + 1/2*c) + 2) + 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d 
*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1 
/2*c) + 2) - 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 
- 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 3 
3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*co 
s(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*cos(6*d*x + 6*c) 
^2 + 9*(14*sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 90*sqrt(2)*a*sin(1/2*d*x + 1/2 
*c) - 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqr 
t(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 33*a*log 
(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d 
*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 33*a*log(2*cos(1/2*d*x 
 + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 
2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 
2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin( 
1/2*d*x + 1/2*c) + 2))*cos(4*d*x + 4*c)^2 + 9*(14*sqrt(2)*a*sin(3/2*d*x + 
3/2*c) + 90*sqrt(2)*a*sin(1/2*d*x + 1/2*c) - 33*a*log(2*cos(1/2*d*x + 1...
 
3.1.89.8 Giac [A] (verification not implemented)

Time = 0.44 (sec) , antiderivative size = 252, normalized size of antiderivative = 1.54 \[ \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^4(c+d x) \, dx=-\frac {\sqrt {2} {\left (3 \, \sqrt {2} {\left (11 \, A a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + 14 \, B a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )\right )} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right ) + \frac {4 \, {\left (132 \, A a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 168 \, B a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 176 \, A a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 192 \, B a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 63 \, A a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 54 \, B a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3}}\right )} \sqrt {a}}{96 \, d} \]

input
integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^4,x, algorith 
m="giac")
 
output
-1/96*sqrt(2)*(3*sqrt(2)*(11*A*a*sgn(cos(1/2*d*x + 1/2*c)) + 14*B*a*sgn(co 
s(1/2*d*x + 1/2*c)))*log(abs(-2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c))/abs(2*sq 
rt(2) + 4*sin(1/2*d*x + 1/2*c))) + 4*(132*A*a*sgn(cos(1/2*d*x + 1/2*c))*si 
n(1/2*d*x + 1/2*c)^5 + 168*B*a*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2 
*c)^5 - 176*A*a*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^3 - 192*B*a 
*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^3 + 63*A*a*sgn(cos(1/2*d*x 
 + 1/2*c))*sin(1/2*d*x + 1/2*c) + 54*B*a*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2 
*d*x + 1/2*c))/(2*sin(1/2*d*x + 1/2*c)^2 - 1)^3)*sqrt(a)/d
 
3.1.89.9 Mupad [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^4(c+d x) \, dx=\int \frac {\left (A+B\,\cos \left (c+d\,x\right )\right )\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}}{{\cos \left (c+d\,x\right )}^4} \,d x \]

input
int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(3/2))/cos(c + d*x)^4,x)
 
output
int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(3/2))/cos(c + d*x)^4, x)